
Cache Coherency and
Multi-Core Programming

Christian Gyrling

Naughty Dog

This is a very technical talk so this is
the only fun slide. Enjoy it!

I Haz
Code
Skillz

Questions

• How does the cache share data between
cores?

• How does the data stay consistent when
multiple cores are updating memory at the
same time?

Simple 2-core CPU

Core Core

L1 Cache

ICB – Inter Connect Bus

Memory Controller

L1 Cache

Main Memory

Caching
Address Variable Value

0x40000 B 4

0x40100 C 2

0x40200 D 6

0x40300 E 8

0x40400 F 34

0x40500 G 787

0x40600 H 3

0x40700 I 879798

0x40800 J 32

0x40900 K 42

0x40A00 L -9

0x40B00 M 88

0x40C00 N 6

0x40D00 O 55

0x40E00 P 0

0x40400 F 34

0x40600 H 3

0x40D00 O 55

Main Memory

Local Cache On Chip

• Data stored in cache lines (64 / 128 bytes)
• Fast access to recently used cache lines

Memory Is Far Away

ICB – Inter Connect Bus

• Connects cores

• Not just data

• Cache coherence protocol

• “Cache coherence domain”

– Usually all processors and all cores

The MESI Protocol

• Cache Coherence
• Any given cache line can only be modified by one core

at a time.
• A cache line can be in 4 states

– (M)odified
• Exclusively modified copy of main memory among all cores

– (E)xclusive
• Exclusive copy of main memory among all cores

– (S)hared
• An exact copy of what is in main memory AND other cores may

also have an unmodified copy

– (I)nvalid
• The cache line is stale and is no longer valid

MESI Protocol Messages

• Messages are sent on the ICB to maintain
coherency between the caches

• Anyone on the ICB can reply to the ‘Read’
messages

– Not just the memory controller but also other
cores.

MESI Message Types

• Message Types (refers to a cache line)

– Read / Read Acknowledge

– RWITW – Read With Intent To Write

• Read + Invalidate

– Invalidate / Invalidate Acknowledge

• Ask other cores to invalidate this cache line

– Writeback

• Write back cache line to main memory

Cache line transitions

• Read cache line
– Invalid -> Exclusive

• only core with a copy

– Invalid -> Shared
• other cores also have a copy

• Write to cache line
– Exclusive -> Modified
– Shared -> Modified

• all other cores invalidate their version of this cache line

• Told to invalidate
– Exclusive / Shared -> Invalid
– Modified -> Invalid

• triggers a ‘writeback’ to main memory

• Another core want to read our modified cache line
– Modified -> Shared

• triggers a ‘writeback’ to main memory

The Players…

• Example

– Core 0 - Producer

– Core 1 - Consumer

void foo()
{
 data = 1;
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Initially Core 0’s cache is empty
and Core 1’s contain the ‘a’ and
‘b’ cache lines

ICB

- - I

- - I

Core 0

a 1 E

b 0 E

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 0 does not have ‘a’ in its
cache and therefore requests it

Read (a) ICB

- - I

- - I

Core 0

a 1 E

b 0 E

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 1 sees the request and
has the cache line ‘a’. It
responds with the cache line
and marks its own version as
‘Shared’

Read Response (a=1) ICB

- - I

- - I

Core 0

a 1 S

b 0 E

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 0 receives the cache line
and installs it in its cache.
The branch can now be
evaluated

Read Response (a=1) ICB

a 1 S

- - I

Core 0

a 1 S

b 0 E

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 0 does not have ‘b’ in its
cache and therefore requests
it. This time the request has a
hint to indicate the intent to
write to ‘b’.

RWITW (b) ICB

a 1 S

- - I

Core 0

a 1 S

b 0 E

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 1 sees the request on the
ICB and returns the cache line.
Because the ‘RWITW’ implies
an invalidate request Core 1
now also invalidates ‘b’

RWITW (b=0) ICB

a 1 S

- - I

Core 0

a 1 S

b 0 I

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 0 receives the ‘b’ cache
line and installs it in its cache
as ‘Exclusive’

RWITW (b=0) ICB

a 1 S

b 0 E

Core 0

a 1 S

b 0 I

Core 1

Main Memory

a 1

b 0

Cache Ownership Example

if (a)
{
 b = 4;
}

‘a’ and ‘b’ are on
separate cache lines

Core 0 now has the cache line
and can commit the store to
‘b’. This marks the cache line as
‘Modified’ but stays in the
cache and is not saved to main
memory.

ICB

a 1 S

b 4 M

Core 0

a 1 S

b 0 I

Core 1

Main Memory

a 1

b 0

2-core CPU + Store Qs

Core Core

L1 Cache

ICB – Inter Connect Bus

Memory Controller

L1 Cache

Main Memory

Store Q Store Q

Reasons for Store Q

• Prevent CPU execution stall while waiting for a
missing/invalid cache line

• Loads can now “pass” stores if the cache line is more
readily available
– It might be available in the local cache already or by a

neighboring core.

• Requires snooping the Store Q for loads to ensure that
memory looks the same for the locally running core.
– Even if the store hasn’t made it into the cache a

subsequent load should load the value that was stored

Store Q Issue Example

void foo()
{
 data = 1;
 flag = 1;
}

- - I

flag 0 E

Main Memory

data 0

flag 0

ICB

Core 0 executes ‘foo’
Core 1 executes ‘bar’
‘flag’ cache line is owned by ‘0’
‘data’ cache line is owned by ‘1’

void bar()
{
 while (flag == 0);
 assert(data);
}

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store Q Issue Example

void foo()
{
 data= 1;
 flag = 1;
}

RWITW (data) ICB

Core 0 saves the store in the
Store Q and issues a RWITW
message for ‘data’ due to it not
being in the cache

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 0 E

Core 0
Cache/Store Q

data 0 E

- - I

Core 1
Cache/Store Q

Main Memory

data 0

flag 0

data 1

Store Q Issue Example

void foo()
{
 data= 1;
 flag = 1;
}

Read (flag) ICB

Core 1 issues a read message
for ‘flag’ due to it not being in
the cache

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 0 E

data 0 E

- - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

Store Q Issue Example

void foo()
{
 data= 1;
 flag = 1;
}

ICB

Core 0 owns ‘flag’ and hence
updates the cache with ‘1’ and
marks as modified

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 1 M

data 0 E

- - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

Store Q Issue Example

void foo()
{
 data= 1;
 flag = 1;
}

Read Response (flag=1) ICB

Core 0 respond to the read
request of ‘flag’
The cache line is written back
to main memory and also
marked as Shared.

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 1 S

data 0 E

- - I

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

Store Q Issue Example

Read Response (flag=1) ICB

Core 1 receives the read
response and marks the cache
line as Shared

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 1 S

data 0 E

flag 1 S

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data= 1;
 flag = 1;
}

Store Q Issue Example

ICB

Core 1 now moves on to the
next instruction. ‘data’ is in the
cache and is therefore read.
ASSERT!!

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 1 S

data 0 E

flag 1 S

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data= 1;
 flag = 1;
}

Store Q Issue Example

RWITW Resp. (data=0) ICB

Core 1 now receive the delayed
“Read Invalidate” message. It
replies and marks its cache line
as invalid

- - I

flag 1 S

data 0 I

flag 1 S

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void bar()
{
 while (flag == 0);
 assert(data);
}

void foo()
{
 data= 1;
 flag = 1;
}

Store Q Issue Example

RWITW Resp. (data=0) ICB

Core 0 receives the cache line
and installs it in its cache.

data 0 E

flag 1 S

data 0 I

flag 1 S

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void bar()
{
 while (flag == 0);
 assert(data);
}

void foo()
{
 data= 1;
 flag = 1;
}

Store Q Issue Example

ICB

Core 0’s Store Q can finally
commit the write to the ‘flag’
cache line but it is too late.
Core 1 is halted and execution
stops.

data 1 M

flag 1 S

data 0 I

flag 1 S

Main Memory

data 0

flag 1

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void bar()
{
 while (flag == 0);
 assert(data);
}

void foo()
{
 data= 1;
 flag = 1;
}

How do we solve this issue?

• All caches have a coherent view of main
memory BUT local writes are not part of that

• We need a way to ensure that our stored data
is part of the ‘cache coherent domain’

– I.e Visible by other cores

• I.e Can be fetched by other caches

• Can we flush the store Q to the cache?

– Memory Store Barriers (__mb_release)

Memory Store Barriers

• CPU instruction that won’t return until all data in the
Store Q preceding the memory barrier is in the cache
– CPUs are evil!

• Prevents compilers from optimize memory stores
across this barrier.
– Compilers are evil!

• Once the data is in the cache it can be seen by all other
caches due to the cache line being invalidated in all
other caches.
– RWITW (Read With Intent To Write)

• Read + Invalidate

Store Q Issue Example (Fixed)

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

- - I

flag 0 E

Main Memory

data 0

flag 0

ICB

Core 0 executes ‘foo’
Core 1 executes ‘bar’
‘data’ cache line is owned by ‘1’
‘flag’ cache line is owned by ‘0’

void bar()
{
 while (flag == 0);
 assert(data);
}

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store Q Issue Example (Fixed)

RWITW (data) ICB

Core 0 saves the write in the
Store Q and issues a RWITW
message for ‘data’ due to it not
being in the cache

- - I

flag 0 E

Core 0
Cache/Store Q

data 0 E

- - I

Core 1
Cache/Store Q

Main Memory

data 0

flag 0

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Read (flag) ICB

Core 1 issues a read message
for ‘flag’ due to it not being in
the cache

- - I

flag 0 E

data 0 E

- - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

ICB

Core 0 blocks on the memory
barrier for the store Q to be
flushed to the cache

- - I

flag 0 E

data 0 E

- - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Read Response (flag=0) ICB

Core 0 respond to the read
request of ‘flag’
The cache line sent to Core 1
and also marked as Shared on
Core 0.

- - I

flag 0 S

data 0 E

- - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Read Response (flag=0) ICB

Core 1 receives the read
response and marks the cache
line as Shared

- - I

flag 0 S

data 0 E

flag 0 S

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

RWITW Resp. (data=0) ICB

Core 1 now receive the delayed
Read Invalidate message. It
replies and marks its cache line
as ‘Invalid’

- - I

flag 0 S

data - I

flag 0 S

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Read Inv Resp. (data=0) ICB

Core 0 receives ‘data’ as the
“Read Invalidate” response
from Core 1

data 0 E

flag 0 S

data - I

flag 0 S

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

ICB

Core 0 now commits the write
in the Store Q into the cache
and marks it as ‘Modified’

data 1 M

flag 0 S

data - I

flag 0 S

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Invalidate ‘flag’ ICB

Core 0 want to set ‘flag’ to 1
but because ‘flag’ is shared
between cores an ‘Invalidate’
message needs to be sent out
first

data 1 M

flag 0 S

data - I

flag 0 S

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Invalidate Ack ‘flag’ ICB

Core 1 receives the ‘Invalidate’
and sends an ‘Invalidate
Acknowledge’ response

data 1 M

flag 0 S

data - I

flag - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Invalidate Ack ‘flag’ ICB

Core 0 receives the ‘Invalidate
Ack’ and can now modify ‘flag’

data 1 M

flag 1 M

data - I

flag - I

Main Memory

data 0

flag 0

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Store Q Issue Example (Fixed)

Read (flag) ICB

Core 1 issues a read message
for ‘flag’ due to it being marked
‘Invalid’ in the cache

Main Memory

data 0

flag 0

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

data 1 M

flag 1 M

data - I

flag - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store Q Issue Example (Fixed)

Read Response (flag=1) ICB

Core 0 respond to the read
request of ‘flag’
The cache line is also sent to
main memory and marked as
‘Shared’.

Main Memory

data 0

flag 1
void bar()
{
 while (flag == 0);
 assert(data);
}

data 1 M

flag 1 S

data - I

flag - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

Store Q Issue Example (Fixed)

Core 1 receives the read
response and marks the cache
line as Shared.
Execution can now continue.
The same sequence plays out
to fetch ‘data’… and all is well.

Main Memory

data 0

flag 1
void bar()
{
 while (flag == 0);
 assert(data);
}

Read Response (flag=1) ICB

data 1 M

flag 1 S

data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

2-core CPU + Store Qs + Inv Q

Core Core

L1 Cache

ICB – Inter Connect Bus

Memory Controller

L1 Cache

Main Memory

Store Q Store Q

Inv Q Inv Q

Reasons for Invalidate Q

• Faster invalidate response from other cores

– A busy core could take a while to reply

– The ‘Invalid Acknowledge’ response cannot be
sent until the cache has actually invalidated the
cache line

• Contract: No MESI messages regarding that
cache line will be sent by this core until all
queued messages for that cache line have
been processed

Invalidate Q Issue Example

- - I

flag 0 E

Main Memory

data 0

flag 0

ICB

Core 0 executes ‘foo’
Core 1 executes ‘bar’
‘flag’ cache line is owned by ‘0’
‘data’ cache line is owned by ‘1’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

- - I

flag 0 E

Main Memory

data 0

flag 0

RWITW (data) ICB

Core 0 does not have ‘data’ in
the cache and requests the
cache line. It saves the write in
the Store Q pending the cache
line data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

- - I

flag 0 E

Main Memory

data 0

flag 0

Read (flag) ICB

Core 1 does not have ‘flag’ in
the cache and issues a read
request

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

Main Memory

data 0

flag 0

Core 0 continues execution but
stops on the memory barrier
where it waits for all stores to
complete

ICB

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

- - I

flag 0 E

Invalidate Q Issue Example

- - I

flag 0 E

Main Memory

data 0

flag 0

RWITW Resp (data=0) ICB

Core 1 receives the ‘Read +
Invalidate’ request. It replies
with the cache line and records
the Invalidate of ‘data’ in the
Inv Q but doesn’t invalidate it
just yet.

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

data 0 E

flag 0 E

Main Memory

data 0

flag 0

RWITW Resp (data=0) ICB

Core 0 receives the ‘data’ cache
line and installs it in the cache.
As far as Core 0 is concerned all
other cores have replied “Yes, I
have invalidated ‘data’” so it
marks ‘data’ as ‘Exclusive’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

Main Memory

data 0

flag 0

Core 0 commits the Store Q to
the cache and marks ‘data’ as
Modified. It is now free to
continue executing

ICB

data 1 M

flag 0 E

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

Main Memory

data 0

flag 0

Core 0 now updates ‘flag’
directly as it is marked as
‘Exclusive’.

ICB

data 1 M

flag 1 M

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Read Resp. (flag=1) ICB

Core 0 receives read request
for ‘flag’. Because the cache
line is modified it triggers a
‘writeback’ and then returns
the now updated value and
marks ‘flag’ as ‘Shared’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 receives the ‘flag’ cache
line and installs it in the cache
as ‘Shared’

data 0 E

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

Read Resp. (flag=1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 can now continue
execution. The ‘data’ cache line
is in the cache and valid and
the stale value is read.
Note: No MESI msg was sent so
the contract is upheld.

data 0 E

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

Read Resp. (flag=1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

Invalidate Q Issue Example

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 finally applies the
‘Invalidate’ from the Inv Q but
it is too late.
CRASH!

data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

Read Resp. (flag=1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 assert(data);
}

How do we solve this issue?

• This time the local core isn’t using all
information it has when servicing the read

– Why?

• Speed, speed, speed

• Is there a way for us to force the core to use
all information?

– Yes, we can flush the ‘Invalidate Q’

– Memory Load Barriers (__mb_acquire)

Memory Load Barriers

• CPU instruction

• All messages in the Invalidate Q is processed

• All loads preceding the barrier will complete
– Did I mention that CPUs are evil!

• Prevents compilers from optimize memory loads across
this barrier.
– Compilers are evil!

• Guarantees that data read after the barrier will be
freshly pulled from other caches/main memory
– Stale cache lines are effectively evicted

Invalidate Q Issue Example (Fixed)

- - I

flag 0 E

Main Memory

data 0

flag 0

ICB

Core 0 executes ‘foo’
Core 1 executes ‘bar’
‘flag’ cache line is owned by ‘0’
‘data’ cache line is owned by ‘1’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

- - I

flag 0 E

Main Memory

data 0

flag 0

RWITW (data) ICB

Core 0 does not have ‘data’ in
the cache and requests the
cache line. It saves the write in
the Store Q pending the cache
line data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

- - I

flag 0 E

Main Memory

data 0

flag 0

Read (flag) ICB

Core 1 does not have ‘flag’ in
the cache and issues a read
request

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

Main Memory

data 0

flag 0

Core 0 continues execution but
stops on the memory barrier
where it waits for all stores to
complete

ICB

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1 Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

- - I

flag 0 E

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

- - I

flag 0 E

Main Memory

data 0

flag 0

RWITW Resp (data=0) ICB

Core 1 receives the Read +
Invalidate request. It replies
with the cache line and records
the Invalidate of ‘data’ in the
Inv Q but doesn’t invalidate it
just yet.

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 0 E

flag 0 E

Main Memory

data 0

flag 0

RWITW Resp (data=0) ICB

Core 0 receives the ‘data’ cache
line and installs it in the cache.
As far as Core 0 is concerned all
other cores have replied “Yes, I
have invalidated ‘data’” so it
marks ‘data’ as ‘Exclusive’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data 1

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

Main Memory

data 0

flag 0

Core 0 commits the Store Q to
the cache and marks ‘data’ as
‘Modified’. It is now free to
continue executing

ICB

data 1 M

flag 0 E

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

Main Memory

data 0

flag 0

Core 0 now updates ‘flag’
directly as it is marked as
‘Exclusive’.

ICB

data 1 M

flag 1 M

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Read Resp. (flag=1) ICB

Core 0 receives read request
for ‘flag’. Because the cache
line is modified it triggers a
‘Writeback’ and then returns
the now updated value and
marks ‘flag’ as ‘Shared’

data 0 E

- - I

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 receives the ‘flag’ cache
line and installs it in the cache
as ‘Shared’

data 0 E

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

Read Resp. (flag=1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 can now continue
execution. It arrives at the
memory barrier and now waits
for the ‘Invalidate Q’ to clear.

data 0 E

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

data I

Store-Q

Inv-Q

Read Resp. (flag=1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 process the invalidate Q
and marks the ‘data’ cache line
as invalid.

data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 can now continue
executing as the memory
barrier has waited for the Inv Q
to clear and loads to complete.

data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 M

flag 1 S

Main Memory

data 0

flag 1

Core 1 now have to request the
cache line for ‘data’ as it is
marked as ‘Invalid’.

data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

Read (data) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 S

flag 1 S

Main Memory

data 1

flag 1

Core 0 receives the read
request. This triggers a
‘Writeback’ followed by the
cache line being sent out and
marked as ‘Shared’ data - I

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

Read Resp. (data = 1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Invalidate Q Issue Example (Fixed)

data 1 S

flag 1 S

Main Memory

data 1

flag 1

Core 1 finally receives the
‘data’ cache line and execution
continues past the assert and
life is good

data 1 S

flag 1 S

Core 0
Cache/Store Q

Core 1
Cache/Store Q

Store-Q

Inv-Q

Read Resp. (data = 1) ICB

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

The Solutions (Memory Barriers)

• Two types
– Release Semantic

• Flush Store Q

• Producer behavior

• Prevent compiler from moving stores across barrier

– Acquire Semantic
• Flush Cache Invalidate Q

• Prior Loads Complete

• Consumer behavior

• Prevent compiler from moving loads across barrier

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

Memory Barriers – Release Semantics

• Prevents reordering of writes by compiler or CPU

• Used when handing out access to data

• x86/x64: _ReadWriteBarrier(); _mm_sfence();

• Compiler intrinsic, prevents compiler reordering

• PowerPC: __lwsync();

• Hardware barrier, prevents CPU write reordering

• Positioning is crucial!

• Write the data

• __mb_release()

• Write the control value

void foo()
{
 data = 1;
 __mb_release();
 flag = 1;
}

Memory Barriers – Acquire Semantics

• Prevents reordering of reads by compiler or CPU
• Used when gaining access to data

• x86/x64: _ReadWriteBarrier(); _mm_lfence();
• Compiler intrinsic, prevents compiler reordering

• PowerPC: __lwsync(); or isync();
• Hardware barrier, prevents CPU read reordering

• __lwsync()
• This syncs the Store Q, Inv Q and waits for Loads

• __isync()
• This empties the Inv Q and clears the I-cache. This in turn prevent instruction prefetching and

therefore speculative loads. This guarantees that any data read after is up to date.

• Positioning is crucial!
• Read the control value

• __mb_acquire()

• Read the data

void bar()
{
 while (flag == 0);
 __mb_acquire();
 assert(data);
}

A quick note on __lwsync()

• It does NOT enforce ordering of LOADS
following STORES

• Be careful on ‘acquire’ memory barriers

False Sharing

• Avoid having data members operated on by
different cores on the same cache line

– Not doing this results in cache line ping-ponging
and degrades performance

• Keep the access control flag for shared data on
its own cache line to prevent this

Three Independent Layers

• Execution
– The CPU can execute independently from the cache as long as

the cache has the data

• Cache
– The cache doesn’t have to write any data to main memory in

order to ensure cache coherency
– Other optimizations exist to further prevent writes to main

memory unless really needed. (Example: MOESI)

• Main Memory
– I/O devices(read GPU) sees this and not caches. You need to

really force the data all the way down to main memory if you
want another device to be able to read it.

– Main memory is REALLY FAR AWAY!!!

Compare And Swap (CAS)

• Atomic update of an aligned native sized memory
location
– 32-bit, 64-bit and sometimes other sizes

• Operates on the ‘Cache Layer’, not main memory
• PowerPC

– Load With Reservation (addr)
– Conditional Store (addr, newValue)

• Returns success(0)/failure(!0)

• Intel/AMD
– CompareAndExchange (addr, expected, newValue)

• Returns the previous value in ‘addr’.
• prevValue == expected ? Success : Failure

Example: Compare And Swap (CAS)

• PowerPC/PS3:

– lwarx / stwcx
• The PowerPC processor can hold only one reservation at a time.

– Does NOT guarantee that all other prior loads/stores are visible by the other cores
• Solution: Add __lwsync or __isync after the successful CAS.

• Intel/AMD

– lock cmpxchg [ecx], edx

• ecx – pointer to the variable

• eax – expected value of variable

• edx – value to write to IF variable == eax
– DOES guarantee that all prior loads/stores are visible by the other cores

Acquire Example (Spinlock)
Apple OS code

spinlock_64_try_mp:
 mr r5, r3 // ‘r5’ is our lock address
 li r3, 1 // load default return value ‘success’
1:
 lwarx r4,0,r5 // load with reservation
 li r6,-1 // locked == -1
 cmpwi r4,0
 bne-- 2f // early out if locked

 stwcx. r6,0,r5 // conditional store
 isync // cancel speculative execution
 beqlr++ // if successful CAS return success (r3=1)
 b 1b // … else, try again
2:
 li r6,-4
 stwcx. r5,r6,r1 // clear the pending reservation (dummy write)
 li r3,0 // we did not get the lock, return fail (r3=0)
 blr

Release Example (Spinlock)
Apple OS code

spinlock_64_unlock_mp:
 lwsync // complete prior stores before unlock
 li r4,0
 stw r4,0(r3)
 blr

Multi-Core Programming Is Hard

• It is wise to use existing OS synchronization
primitives (CriticalSection, Mutex, Events)

• …unless you really want performance

– Mutex.Lock = thousands of cycles

– Barriers = ~hundred cycles

Timings in cycles

XBox
PowerPC

Windows
Intel

lwsync 33-48 20-90

InterlockedIncrements CAS
(OS func)

225-260 36-90

CriticalSection (Acq+Rel) ~345 40-100

Mutex (Acq+Rel) ~2350 750-2500

Thread-Safe != Concurrent

• Thread-Safe (my own definition)

– Many threads can safely call this function

– Does not guarantee progress by more than one
thread

• Concurrent (my own definition)

– Many threads can safely call this function

– Most of the threads are having forward progress
at all times

Best Practices

• Prefer using OS provided CriticalSections

• Use the Acquire/Release MemoryBarriers

• Align shared data/flags to 128 byte boundaries
– Even on Intel/AMD due to hardware prefetching

• PS3: When in doubt and you are loading data
after a lock, use ‘isync’ over ‘lwsync’

• Let your peers review any code written at this
level to ensure that your code is functional
BEFORE checking in

Take Away

• Use specific instructions to force data to other layers
– Cache Layer – (Other Cores) - lwsync() and isync()
– Main Memory (IO devices) – eioio and sync()

• It’s a bit like SPU programming and DMA’s
– Explicitly ‘transfer’ data between layers

• This is still a very simplified view of how processors work!
– Example: Memory Access Modes

• Write-Through
• Cache-Inhibited
• Cache-Coherent
• Guarded

• Be scared!!
– If you’re not scared you didn’t understand this presentation

References

• Dr. Dobbs Articles [Herb Sutter]
– The Pillars of concurrency

• www.drdobbs.com/dept/architect/200001985

– Lock-Free Code: A False Sense of Security
• www.drdobbs.com/cpp/210600279

– Writing Lock-Free Code: A Corrected Queue
• www.drdobbs.com/parallel/210604448

– A Generalized Concurrent Queue
• www.drdobbs.com/parallel/211601363

• Memory Barriers: A Hardware view for software hackers
– http://irl.cs.ucla.edu/~yingdi/paperreading/whymb.2010.06.07c.pdf

• Wikipedia: MESI Protocol
– http://en.wikipedia.org/wiki/MESI_protocol

• Lock-Less Programming [Bruce Dawson]
– http://www.gdcvault.com/play/1751/Lockless-Programming-in

• MSDN References
– Lockless Programming Considerations

• http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650%28v=vs.85%29.aspx

– Memory Barrier and _ReadWriteBarrier
• http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208%28v=vs.85%29.aspx
• http://msdn.microsoft.com/en-us/library/f20w0x5e%28v=vs.80%29.aspx

– InterlockedCompareExchange (CAS – Compare and Swap)
• http://msdn.microsoft.com/en-US/library/ttk2z1ws%28v=vs.80%29.aspx

• PowerPC Documentation
– http://www.ibm.com/developerworks/systems/articles/powerpc.html
– http://www.opensource.apple.com/source/xnu/xnu-792.2.4/osfmk/ppc/commpage/atomic.s
– http://www.opensource.apple.com/source/xnu/xnu-1504.9.37/osfmk/ppc/commpage/spinlocks.s

• Intel – Chapters 8.1, 11.2 and 11.4
– ftp://download.intel.com/design/processor/manuals/253668.pdf

http://www.drdobbs.com/dept/architect/200001985
http://www.drdobbs.com/cpp/210600279
http://www.drdobbs.com/cpp/210600279
http://www.drdobbs.com/cpp/210600279
http://www.drdobbs.com/parallel/210604448
http://www.drdobbs.com/parallel/210604448
http://www.drdobbs.com/parallel/210604448
http://www.drdobbs.com/parallel/211601363
http://irl.cs.ucla.edu/~yingdi/paperreading/whymb.2010.06.07c.pdf
http://en.wikipedia.org/wiki/MESI_protocol
http://www.gdcvault.com/play/1751/Lockless-Programming-in
http://www.gdcvault.com/play/1751/Lockless-Programming-in
http://www.gdcvault.com/play/1751/Lockless-Programming-in
http://www.gdcvault.com/play/1751/Lockless-Programming-in
http://www.gdcvault.com/play/1751/Lockless-Programming-in
http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684208(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/f20w0x5e(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/f20w0x5e(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/f20w0x5e(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/ttk2z1ws(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/ttk2z1ws(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/ttk2z1ws(v=vs.80).aspx
http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.opensource.apple.com/source/xnu/xnu-792.2.4/osfmk/ppc/commpage/atomic.s
http://www.opensource.apple.com/source/xnu/xnu-792.2.4/osfmk/ppc/commpage/atomic.s
http://www.opensource.apple.com/source/xnu/xnu-792.2.4/osfmk/ppc/commpage/atomic.s
http://www.opensource.apple.com/source/xnu/xnu-1504.9.37/osfmk/ppc/commpage/spinlocks.s
http://www.opensource.apple.com/source/xnu/xnu-1504.9.37/osfmk/ppc/commpage/spinlocks.s
http://www.opensource.apple.com/source/xnu/xnu-1504.9.37/osfmk/ppc/commpage/spinlocks.s
ftp://download.intel.com/design/processor/manuals/253668.pdf

